首页> 外文OA文献 >GAMBIT: A parameterless model-based evolutionary algorithm for mixed-integer problems
【2h】

GAMBIT: A parameterless model-based evolutionary algorithm for mixed-integer problems

机译:GAMBIT:混合整数问题的无参数模型演化算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

textabstractLearning and exploiting problem structure is one of the key challenges in\udoptimization. This is especially important for black-box optimization (BBO)\udwhere prior structural knowledge of a problem is not available. Existing\udmodel-based Evolutionary Algorithms (EAs) are very efficient at learning\udstructure in both the discrete, and in the continuous domain. In this paper,\uddiscrete and continuous model-building mechanisms are integrated for the\udMixed-Integer (MI) domain, comprising discrete and continuous variables.\ud\udWe revisit a recently introduced model-based evolutionary algorithm for the MI\uddomain, the Genetic Algorithm for Model-Based mixed-Integer opTimization\ud(GAMBIT). We extend GAMBIT with a parameterless scheme that allows for practical\uduse of the algorithm without the need to explicitly specify any parameters. We\udfurthermore contrast GAMBIT with other model-based alternatives. The ultimate\udgoal of processing mixed dependences explicitly in GAMBIT is also addressed by\udintroducing a new mechanism for the explicit exploitation of mixed dependences.\udWe find that processing mixed dependences with this novel mechanism allows for\udmore efficient optimization.\ud\udWe further contrast the parameterless GAMBIT with Mixed-Integer Evolution\udStrategies (MIES) and other state-of-the-art MI optimization algorithms from\udthe General Algebraic Modeling System (GAMS) commercial algorithm suite on\udproblems with and without constraints, and show that GAMBIT is capable of\udsolving problems where variable dependences prevent many algorithms from\udsuccessfully optimizing them.
机译:学习和利用问题结构是\ udoptimization中的关键挑战之一。这对于黑箱优化(BBO)\ ud尤其重要,因为该问题无法获得问题的现有结构知识。现有的基于\ udmodel的进化算法(EA)在离散域和连续域中在学习\ udstructure方面都非常有效。本文针对\ udMixed-Integer(MI)域集成了\ uddiscrete和连续模型构建机制,其中包括离散变量和连续变量。\ ud \ ud我们重新审视了MI \ uddomain最近引入的基于模型的演化算法,基于模型的混合整数优化算法\ ud(GAMBIT)的遗传算法。我们使用无参数方案扩展了GAMBIT,该方案允许对算法进行实用\滥用,而无需明确指定任何参数。我们进一步将GAMBIT与其他基于模型的替代方案进行了对比。 \ ud引入了一种显式利用混合依赖关系的新机制,从而解决了GAMBIT中显式处理混合依赖关系的最终难题。\ ud我们发现使用这种新颖的机制处理混合依赖关系可以实现\\ ud效率更高的优化。\ ud \ udWe进一步对比了通用代数建模系统(GAMS)商业算法套件中带有混合整数演化\ udStrategies(MIES)和其他最新MI优化算法的无参数GAMBIT在\ udproblem上有和没有约束的情况,并显示了GAMBIT能够\解决由于变量依赖性而导致许多算法无法成功优化它们的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号